低溫锂離子電池性能改善方法
锂離子電池低温性能差的主要因素尚有争论,原因主要有:低温下电解液的粘度增大,电导率降低;电解液/电极界面膜阻抗和电荷转移阻抗增大;锂离子在活性物质本体中的迁移速率降低. 由此造成低温下电极极化加剧,充放电容量减小。

锂離子電池低温充电过程中尤其是低温大倍率充电时,负极将出现锂金属析出与沉积,沉积的金属锂易与电解液发生不可逆反应消耗大量的电解液,同时使SEI膜厚度进一步增加,导致电池负极表面膜的阻抗进一步增大,电池极化再次增强,最将会极大破坏电池的低温性能、循环寿命及安全性能。
低溫锂離子電池性能改善方法从正极、电解液、负极三个方面提高电池低温性能的改性方法。
一、正極材料
改善正極材料在低溫下離子擴散性能的主流方式有:
1 采用导电性优异的材料对活性物质本体进行表面包覆的方法提升正极材料界面的电导率,降低界面阻抗,同时减少正极材料和电解液的副反应,稳定材料结构。
2 通过Mn、Al、Cr、Mg、F等元素对材料本体进行体相掺杂,增加材料的层间距来提高Li+在本体中的扩散速率,降低Li+的扩散阻抗,进而提升电池的低温性能。
3 降低材料粒径,缩短Li+迁移路径。需要指出的是,该方法会增大材料的比表面积从而与电解液的副反应增多。
二、電解液
电解液作为锂離子電池的重要组成部分,不仅决定了Li+在液相中的迁移速率,同时还参与SEI膜形成,对SEI膜性能起着关键性的作用。低温下电解液的黏度增大,电导率降低,SEI膜阻抗增大,与正负极材料间的相容性变差,极大恶化了电池的能量密度、循环性能等。
目前,通過電解液改善低溫性能有以下兩種途徑:
(1)通過優化溶劑組成,使用新型電解質鹽等途徑來提高電解液的低溫電導率;
(2)使用新型添加劑改善SEI膜的性質,使其有利于Li+在低溫下傳導。
1 优化溶剂组成
電解液的低溫性能主要是由其低溫共熔點決定,若熔點過高,電解液易在低溫下結晶析出,嚴重影響電解液的電導率。碳酸乙烯酯(EC)是電解液主要溶劑組分,但其熔點爲36°C,低溫下在電解液中溶解度降低甚至析出,對電池的低溫性能影響較大。通過加入低熔點和低黏度的組分,降低溶劑EC含量,可以有效降低低溫下電解液的黏度和共熔點,提高電解液的電導率。
2 新型电解质盐
電解質鹽是電解液的重要組成之一,也是獲得優良低溫性能的關鍵因素。目前,商用電解質鹽是六氟磷酸锂,形成的SEI膜阻抗較大,導致其低溫性能較差,新型锂鹽的開發迫在眉睫。四氟硼酸锂陰離子半徑小,易締合,電導率較LiPF6低,但是低溫下電荷轉移阻抗小,作爲電解質鹽具有良好的低溫性能。
3 添加剂
SEI膜对电池的低温性能有很重要的影响,它是离子导体和电子绝缘体,是Li+从液相到达电极表面的通道。低温时,SEI膜阻抗变大,Li+在SEI膜中的扩散速率急剧降低, 使得电极表面电荷累积程度加深,导致石墨嵌锂能力下降,极化增强。通过优化SEI膜的组成及成膜条件,提高SEI膜在低温下的离子导电性有利于电池低温性能的提高, 因此开发低温性能优异的成膜添加剂是目前的研究热点。
综上所述,电解液的电导率和成膜阻抗对锂離子電池的低温性能有重要的影响。对于低温型电解液,应从电解液溶剂体系、锂盐和添加剂三方面综合进行优化。对于电解液溶剂,应选择低熔点、低黏度和高介电常数的溶剂体系,线性羧酸酯类溶剂低温性能优异,但其对循环性能影响较大,需匹配介电常数高的环状碳酸酯如EC、PC共混使用;对于锂盐和添加剂,主要从降低成膜阻抗方面考虑,提高锂离子的迁移速率. 另外,低温下适当提高锂盐浓度能提高电解液的电导率, 提高低温性能。
三、負極材料
锂离子在碳负极材料中的扩散动力学条件变差是限制锂離子電池低温性能的主要原因,因此在充电的过程中负极的电化学极化明显加剧,很容易导致负极表面析出金属锂。
选择合适的负极材料是提高电池低温性能的关键因素,目前主要通过负极表面处理、 表面包覆、掺杂增大层间距、控制颗粒大小等途径进行低温性能的优化。
1 表面处理
表面處理包括表面氧化和氟化。表面處理可以減少石墨表面的活性位點,降低不可逆容量損失,同時可以生成更多的微納結構孔道,有利于Li+傳輸,降低阻抗。
2 表面包覆
表面包覆如碳包覆、金屬包覆不但能夠避免負極與電解液的直接接觸,改善電解液與負極的相容性,同時可以增加石墨的導電性,提供更多的嵌入锂位點,使不可逆容量降低。另外,軟碳或硬碳材料的層間距比石墨大,在負極上包覆一層軟碳或硬碳材料有利于锂離子的擴散,降低SEI膜阻抗,從而提高電池的低溫性能。通過少量Ag的表面包覆提高了負極材料的導電性,使其在低溫下具有優異的電化學性能。
3 增大石墨层间距
石墨負極的層間距小,低溫下锂離子在石墨層間的擴散速率降低,導致極化增大,在石墨制備過程中引入B、N、S、K等元素可以對石墨進行結構改性,增加石墨的層間距,提高其脫/嵌锂能力,P(0.106pm)的原子半徑比C(0.077pm)的大,摻P可增加石墨的層間距,增強锂離子的擴散能力,同時有可能提高碳材料中石墨微晶的含量。K引入到碳材料中會形成插入化合物KC8,當鉀脫出後碳材料的層間距增大,有利于锂的快速插入,進而提高電池的低溫性能。
4 控制负极颗粒大小
负极粒径越大,锂离子扩散路径越长,扩散阻抗越大,导致浓差极化增大,低温性能变差。因此适当减小负极材料颗粒尺寸,可以有效缩短锂离子在石墨层间的迁移距离,降低扩散阻抗,增加电解液浸润面积,进而改善电池的低温性能。另外,通过小粒径单颗粒造粒的石墨负极, 具有较高的各项同性,能够提供更多的嵌锂位点,减小极化,也能使电池低温性能明显提高。
锂離子電池的低温性能是制约锂电池应用的关键性因素,如何提高锂电池的低温性能仍然是目前研究的热点和难点。提高锂电池的低温性能应综合考虑电池中正极、负极、电解液等综合因素的影响,通过优化电解液溶剂、添加剂和锂盐组成提高电解液的电导率,同时降低成膜阻抗;对正负极材料进行掺杂、包覆、小颗粒化等改性处理,优化材料结构,降低界面阻抗和Li+在活性物质本体中的扩散阻抗。通过对电池体系整体的优化,减小锂电池低温下的极化,使电池的低温性能得到进一步提高。
上一篇: 高压聚合物锂離子電池
下一篇: 三元锂電池壽命有多長?